

 PASD User’s Manual 1

PROPELLER ASSEMBLY SOURCECODE
DEBUGGER (PASD)

USER’S MANUAL
Version 1.1

09/04/07

Manual © 2007 Insonix
Written by Andy Schenk and Eric Moyer

PASD © 2007 Insonix
Written by Andy Schenk

 PASD User’s Manual 1

TABLE OF CONTENTS

1. PASD Overview..3
2. Installation...4
3. PASD Walkthrough ...5
4. Setting up your spin code to use PASD...7
5. Operation..8

5.1. Main Application Menus..8
5.1.1. File Menu ...8
5.1.2. Debug Menu ...8
5.1.3. COM Menu...9
5.1.4. Help Menu...9

5.2. COG RAM Viewer...9
5.2.1. Viewer Operation ...9
5.2.2. Modifying COG RAM...10

5.3. Main RAM Viewer ..10
5.4. Pin Viewer ..11
5.5. Keyboard Shortcuts ...12

6. Under The Hood ..13
7. Limitations ..14

7.1. Number of COGs ..14
7.2. Runtime Modified Instructions ..14
7.3. WAITCNT and WAITVID...14
7.4. Repeated Definitions ...14

8. About Insonix...15

 PASD User’s Manual 2

“There are no rules here--we're trying to accomplish something."”

 -Thomas Alva Edison

 PASD User’s Manual 3

1. PASD Overview

The Propeller Assembler Source-code Debugger (PASD) is a
suite of software components which enable end-users to
debug Propeller assembly language code at the source level
using a remote (USB attached) Windows PC. PASD supports
setting multiple break points, single-step execution, memory
inspection/modification of COG RAM, inspection of Main
RAM, label recognition, and I/O pin state inspection.

The debugger suite consists of a Windows application, a spin
object and a short Debug Kernel which must be inserted at
the beginning of the code to be debugged. The Debug Kernel
is only 12 longs in size, and makes possible communication
with the PASD spin driver, which runs into own Cog. The
PASD spin driver communicates over the Propeller’s serial
programming interface with the PASD Windows application
running on an attached PC. Except for pins 30 and 31 (the
Propeller’s serial programming interface pins) all Propeller IO
pins are freely available during debugging.

The total Propeller resource footprint of the PASD suite is:

1) Two IO Pins (30 and 31, the serial programming
interface pins).

2) 12 longs at the start of COG Ram in the COG
whose assembly code is being debugged.

3) The upper two longs of Main RAM ($7ff8 and
$7fff).

4) The PASD driver which occupies about 223 Longs
and runs in one dedicated COG.

All remaining Propeller resources (cogs, RAM, pins) are
fully usable.

PASD presently supports debugging code in only one
COG at a time. It would be conceivable for a future
version of PASD to support debugging in all remaining
cogs.

 PASD User’s Manual 4

2. Installation

Place the contents of the PASD .ZIP file into any directory.
PASD.exe is a stand alone executable and does not unpack
any files or require a “Setup” installation.

 PASD User’s Manual 5

3. PASD Walkthrough

1) Double click the PASD_AsmDebugDemo.spin
module to load it into the Propeller IDE.

2) Note: If you are working on a Hydra or target hardware
other then the Propeler Demo Board then you must modify
the _clkmode and _xinfreq settings to match your target
hardware and establish an 80MHz clock. For the Hydra
these setting would be:

CON

 _clkmode = xtal1 + pll8x

 _xinfreq = 10_000_000

3) Power on and connect your target hardware.

4) Press <F10> to upload and run
PASD_AsmDebugDemo.spin. NOTE: Do not close
the Propeller IDE.

5) Double click the PASD.exe executable to start it.

6) In PASD, Select “Com Port” from the “COM” menu
and specify your COM port.

7) Make sure that the Propeller IDE is still open, and that
the “PASD_AsmDebugDemo spin” window in the

Propeller IDE is the currently active window. Press
<F2> (or alternatively select “Get Asm Code” from
the “File” menu)

The main PASD window will update to show the
source code for the module being debugged
(PASD_AsmDebugDemo.spin).

8) Note that the current line ($00C) is highlighted in blue.
This is the first line which will be run when execution
in started.

9) Single step the code by pressing <F8> or choosing
“Step” from the “Debug” menu. Note that line $00C
has executed and the current line is now $00D.

10) Place a breakpoint on line $017 by checking the box at
the left of that line.

11) Run the code by pressing <F5> or choosing “Run”
from the “Debug” menu. Note that execution has
halted on line $017 where the breakpoint was set.

12) Try to set a breakpoint on line $01E by checking the
box at the left of that line. Note that the line becomes
highlighted in red, and that an error message is
displayed at the bottom of the PASD main window.

 PASD User’s Manual 6

PASD does not support setting breakpoints on
instructions which will be modified at runtime (i.e. the
ret instruction, or self-modifying code).

13) Select “Clear All Breakpoints” from the “Debug”
menu.

14) Open up the Pin Viewer window by selecting “Pin
Viewer” from the “Debug” menu.

15) Run the code by pressing <F5> or choosing “Run”
from the “Debug” menu. Note that the Pin Viewer
window is continuously updated to reflect the state of
the Propeller’s I/O pins during operation.

16) Stop the code by pressing <F6> or choosing “Stop”
from the “Debug” menu. Note that execution has
returned to the first line of code ($00C). Since the
Propeller does not support interrupts the PASD
Debug Kernel cannot regain control of code without a
breakpoint being set (Note: single-stepping creates a
temporary breakpoint on the next instruction which is
immediately removed after execution). If you use
“Stop” to halt a program’s execution then PASD must
unload and reload the COG to regain control, and
execution restarts at the first line of your target
program.

 PASD User’s Manual 7

4. Setting up your spin code to use PASD

PASD can be used to debug a single assembly module running
in a single target COG. To set your spin code up to use
PASD:

1) Include the “PASDebug” object by placing the following
line of code into your target module:

OBJ

...

dbg : "PASDebug"

2) Start the “PASDebug” object during your module
initialization by placing the following line of code into
your target module:

PUB main

...

 dbg.start(31,30,@entry)

NOTE: The numbers 31 and 30 are the serial receive and
transmit pins respectfully.

3) Insert the 12 long-word PASD Debugger Kernel at the
start of your target assembly code. It is critical that

the PASD Debugger Kernel be the first instructions in
your assembly code.

NOTE: You must make sure that the cognew() call which
envokes your assembly code (and the dbg.start() call which
starts the debugger) both pass the start address of the
Debug Kernel, not to the start address of your target code
which follows the Debug Kernel. In the example shown
below, the label “entry” is used.

DAT

 org 0

entry

'-- Debugger Kernel add this at Entry (Addr 0)

 long $34FC1202,$6CE81201,$83C120B

 long $8BC0E0A,$E87C0E03,$8BC0E0A

 long $EC7C0E05,$A0BC1207,$5C7C0003

 long $5C7C0003,$7FFC,$7FF8

'---------------------------------------

...

 PASD User’s Manual 8

5. Operation

5.1. Main Application Menus

5.1.1. File Menu

Get Asm Code (F2)

Retrieves the Asm source code from the currently active
window of the currently open Propeller IDE.

Upload Code (F11)

Forces the Propeller IDE to upload the module in the
currently active IDE window.

Open Source File

Opens an Asm source file from disk.

Font Size

Sets the font size used in the main window.

Save Settings

Saves the PASD configuration. The saved configuration will be
loaded the next time PASD is started. The configuration
settings include the COM port setting.

Quit

Closes PASD

5.1.2. Debug Menu

Run (F5)

Starts program execution. Execution will halt when a
breakpoint is reached.

Stop (F6)

Stops program execution. The target module is restarted, and
the program counter returns to the first instruction in the
module.

Step (F8)

Executes the current instruction (highlighted in blue).
Execution halts on the next instruction.

Step Over (F7)

Executes the current instruction (highlighted in blue). If the
instruction is a call, then execution halts on the instruction
following the call.

Set Address

Sets the program counter to the selected instruction line.
Note: to select an instruction line, click the address/data field on the
left side of the line.

 PASD User’s Manual 9

Toggle Breakpoint (F9)

Toggles a breakpoint on the currently selected instruction
line. Note: to select an instruction line, click the address/data field
on the left side of the line.

Clear All Breakpoints

Removes all currently set breakpoints.

COG RAM Viewer

Opens the COG RAM Viewer window.

Main RAM Viewer

Opens the Main RAM Viewer window.

Pin Viewer

Opens the Pin Viewer Window.

5.1.3. COM Menu

COM Port

Sets the COM port used to communicate with the target
hardware.

COM Open/Close

When checked, the COM port is open. When unchecked, the
COM port is closed.

Auto Mode

When checked…

• The COM port is opened and closed automatically
when an “Upload Code” command is executed.

• The COM port is closed automatically if PASD is
minimized

• When PASD is restored (un-minimized) the COM port
is opened and the source code is re-loaded from the
IDE (if “Get ASM Code” was originally used) or from
disk (if “Open Source Code” was originally used).

When unchecked, the COM port may be opened and closed
manually using the “COM Open/Close” setting.

5.1.4. Help Menu

The Help menu provides facilities for accessing help, the
website, and PASD build information.

5.2. COG RAM Viewer

5.2.1. Viewer Operation

The COG RAM viewer displays the entire contents of COG
RAM on the target COG. The COG RAM viewer window is
updated every time code execution is halted for a breakpoint
or a single-step execution request. Any value which has
changed between the time code execution was last started
and the time execution was halted will be highlighted in green.

Addr:

The COG RAM long-word address, in hex.

 PASD User’s Manual 10

Value:

The contents of the COG RAM long-word, displayed in
both Hex and signed decimal.

Label:

The source code label associated with the COG RAM
long-word (if one exists).

5.2.2. Modifying COG RAM

To modify a COG RAM long-word:

1) Click the “Addr” field of the line containing the COG
RAM long-word to be modified.

2) The current long-word’s value will be shown in binary
inside the edit box at the bottom of the COG RAM
viewer. The numbers above the edit box indicate the
32 available bit positions.

3) Click the edit box. The box will be cleared to contain
a single equals sign “=”.

4) Enter the new value after the equals sign either in
decimal with no prefix (e.g. “=1024”), or in hex with a
“$” prefix (e.g. =$aa55aa55).

5) Click “Update”

5.3. Main RAM Viewer

The Main RAM viewer displays 128 longwords of main
memory starting at the specified base address, and can be
used to view both RAM and ROM.

 PASD User’s Manual 11

The data display format can be selected by choosing any of the
following options from the drop-down menu.

Mode Example
$L $W 0470: L $044C0011 W 0011 044C

$L dec 0470: L $044C0011 dec 72089617

$B ‘B 0470: $B 11 00 4C 04 ‘B l...

%L 0470: L %00000100010011000000000000010001

To change the base address of the memory display, enter the
new base address into the edit box, in hex, and press
“Update”. You can also specify “PAR” to view the contents of
Main RAM pointed to by the target COG’s PAR (Cog Boot
Parameter) register.

To move backward or forward 128 longwords use the
backward “<” or forward “>” button.

5.4. Pin Viewer

The Pin Viewer window shows the current state of all
Propeller pins. Pins in a “High” (i.e. “1”) state are shown in
dark red. Pins in a “Low” (i.e. “0”) state are shown in pink.

 High, “1”

 Low, “0”

The pin viewer window is updated every time code execution
is halted for a breakpoint or a single-step execution request,
and is updated continuously whenever code is running (i.e.
when the “Run” command has been issued, and a breakpoint
has not yet been reached).

 PASD User’s Manual 12

5.5. Keyboard Shortcuts

The following keyboard commands can be used to control
PASD:

Key Function

F2 Get Asm Code

F5 Run

F6 Stop

F7 Step Over

F8 Step

F9 Toggle Breakpoint

F11 Upload Code

 PASD User’s Manual 13

6. Under The Hood

The Propeller chip does not contain hardware to specifically
support breakpoints. Instead, it is necessary to simulate
breakpoints by temporarily modifying target instructions.

When you set a breakpoint, PASD replaces the target
instruction with a jump to the PASD debugging kernel, and
stores the original instruction in the Windows PASD
Application. Whenever you clear a breakpoint, the original
instruction is restored.

In the main PASD source-code window you will always be
shown the “orginal” source code instruction even though it
may have been temporarily replaced. In the PASD COG RAM
Viewer you will be able to see the substituted jump
instruction, and the line will be highlighted in red to indicate
that it is a breakpoint.

PASD is not able to support breaking on instructions which
are modified at run-time (such as the “RET” instruction)
because in order to establish the breakpoint the instruction
has to be temporarily replaced with a jump, and the run-time
instruction modification would be made to the jump instead of
the intended original instruction, which would corrupt the
jump and cause unpredictable operation.

Single step execution for opcodes other than JUMP is
simulated by copying the next instruction to the PASD Kernel
and executing it there. Single step execution for JUMP
opcodes is performed by setting two temporary breakpoints;
one at the instruction following the JUMP and one at the
JUMP location. This is necessary to support stepping through
either branch of a conditional JUMP.

 PASD User’s Manual 14

7. Limitations

7.1. Number of COGs

PASD currently only supports debugging a single assembly
module executing in a single COG.

7.2. Runtime Modified Instructions

PASD cannot generally support breakpoints on instructions
which may be programmatically modified. This includes self-
modifying code, and the “RET” instruction.

You can let PASD know that an instruction will be modified at
runtime by using “0-0” as the instruction’s source or
destination field (or both). If you attempt to set a breakpoint
on an instruction designated “0-0” PASD will warn you and
highlight the line in red.

The Propeller architecture is designed to support the RET
instruction by modifying the return address contained in the
RET opcode whenever it’s associated CALL or JMPRET
opcode is executed. If you attempt to set a breakpoint on a
RET instruction PASD will warn you and highlight the line in
red.

7.3. WAITCNT and WAITVID

PASD ignores (i.e. does not execute) WAITCNT and
WAITVID instructions when single stepping for two reasons:

1) These commands are meant to synchronize precise
timings and are not applicable when single stepping.

2) The system counter (CNT) runs freely when PASD is
single stepping even though the target code is “halted”
between steps, so executing a WAITCNT instruction
would very likely cause the Propeller to wait until the
specified count value (if missed) came around again,
which could take about 50 seconds.

7.4. Repeated Definitions

Repeated long/word/byte definitions like:

long value[size]

are not currently recognized by the parser, and cannot be
used with PASD.

 PASD User’s Manual 15

8. About Insonix

Insonix specializes in both hardware and software
development

We have many years of experience developing electronics.
Our main areas of expertise are digital, microprocessor and
DSP based designs for the consumer and medical technology
industries.

After gathering your ideas and product requirement
specifications we provide placement, routing, layout, board
design, software and prototypes (and sometimes small
production runs). Our strength lies in finding the simplest and
most favorable solution in the shortest time, which minimizes
development costs.

